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Abstract-This experimental study investigates non-Darcian flow and heat transfer in high-porosity fibrous 
media. It considers forced convection through materials of different permeability, porosity and thermal 
conductivity. The results show that the porous medium enhances heat transfer from a surface as compared 
to predicted results for slug or for laminar flow in a channel. This enhancement results from dispersion, a 
non-Darcian phenomenon describing the intra-pore mixing that develops as the fluid moves past the solid 
particles. The dispersive transport increases with flow rate and permeability, and at large Reynolds numbers 
overwhelms transport from solid conduction within the fibrous medium. To predict dispersion, this work 
develops a simple model based on the flow conditions and types of porous media. Results from the 
experiment and model demonstrate the effects of dispersion and the adequacy of the homogeneous fluid- 

solid energy equation to model the transport. 

INTRODUCTION 

THIS PAPER experimentally and analytically examines 
flow and heat transfer in constant-porosity fibrous 
media. The focus of this work is on high Reynolds 
number forced flows when non-Darcian effects such as 
thermal dispersion and inertial drag are predominant. 
These effects become important when modeling forced 
convection in compact heat exchangers or regen- 
erators. The analysis is also important in modeling 
natural convection in fibrous insulation, since it experi- 
mentally demonstrates the magnitude of thermal dis- 
persion and presents an analytical model of the 
phenomenon. 

Traditional porous-media analyses utilize Darcian 
or slug flow models and neglect the non-Darcian 
effects such as the viscous shear force along the solid 
boundaries, the inertial convective force and thermal 
dispersion [l-4]. When a porous medium lies adjacent 
to an impermeable surface the velocity profile must 
satisfy the no-slip condition. Throughout the porous 
medium the fluid moves in tortuous paths and recir- 
culates at the back of the solid fibers. This convective 
or inertial effect increases with Reynolds number, 
yielding an increase in pressure drop across the 
medium. If a temperature or concentration gradient 
occurs across the fibers, the recirculation or dispersion 
mixes the fluid and increases the net transport. 

This study and other previous works incorporate 
these effects through a volume-averaging process [5, 
61. The momentum equation is determined by volume 
averaging the Navier-Stokes equations and relating 
the drag force from the presence of the solid phase to 
the Darcian force. The energy equation results from 
separately averaging the fluid and solid phases and 
combining the equations with an effective con- 

ductivity by assuming a small variation in the tem- 
perature gradient [4, 51. The averaging method, how- 
ever, eliminates microscopic phenomena such as local 
recirculation or dispersion, and thus the equations 
rely on additional empirical relations for closure. A 
recent analytical mass transfer study by Koch and 
Brady [7] uses ensemble averaging to develop relations 
for molecular dispersion in fibrous media. Their 
analysis focuses on unconfined media, and therefore 
does not include effects of global variations in velocity 
or concentration. The results do demonstrate a func- 
tional relationship between the dispersion con- 
ductivity and the Reynolds number for mass transfer 
in fibrous media. Two studies examine momentum, 
heat and mass transfer in a semi-infinite fibrous 
medium [ 1, 21. These works include the viscous shear 
force and the inertial effect, but the thermal and mass 
transfer analyses do not include dispersion. The mass 
transfer experiment, however, is for high Schmidt 
numbers, which for the experimental conditions 
obscures any dispersion effect [4]. 

The experimental investigation involves a two- 
dimensional boundary layer flow along a constant 
temperature surface at the entrance of a channel. The 
focus is to analytically and experimentally quantify 
dispersion and to predict the heat transfer from the 
heated surface. The experiment uses materials of 
different conductivities, porosities and permeabilities 
to provide a range of flow and thermal conditions. The 
analysis is based on volume averaging and employs a 
homogeneous or single energy-equation model. Dis- 
persion is included by relating the dispersive flux to the 
macroscopic temperature gradient and an empirical 
dispersion conductivity. The experimental results 
indicate that the dispersion conductivity can be 
equated to a product of the local velocity, square root 
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NOMENCLATURE 

A dispersion coefficient Y dimensionless length, y(.s/K) ‘I* 

CP specific heat at constant pressure Y cross-stream direction. 
D molecular diffusivity 

Da, square root of the inverse Darcy number, Greek symbols 

xlJK c( thermal diffusivity, k/pep 

f inertial coefficient Y dispersion coefficient 
!i length-averaged heat transfer coefficient porosity 
K permeability : dimensionless temperature 
k thermal conductivity /* dynamic viscosity 
L channel length P density. 
Nu, local Nusselt number 
NU length-averaged Nusselt number Subscripts and superscripts 
P pressure a average 

Pe, mass diffussion Peclet number, u,JK/D, b bulk 
Pr Prandtl number, p/pee, C centerline 

Keo Darcian Reynolds number, pu,,JK/p D Darcian 

Re, average Reynolds number, pu,JK/p d dispersion 
T temperature f fluid 
t channel height i inlet 

u dimensionless velocity, u/u, 0 stagnant 
U stream-wise velocity S solid 

uD Darcian velocity, - (K/p)(dP/dx) W wall 
W channel width 

” 
infinity 

x dimensionless length, xe/( Jk ReL, Pr) length averaged 
X stream-wise direction spatially varying. 

of the permeability and a constant. The experiment 
Q*Vu) = -V(P)- $(lj> also demonstrates that dispersion is significantly s2 - - 

larger than molecular, solid conduction for high 
Reynolds number flows. However, a homogeneous 
energy equation suffices to model the flow. 

-P$Kl(uxu)+ y<g (2) 

where ( ) represents a volume-averaged quantity, u 

ANALYTICAL FORMULATION 
and P are the local velocity and pressure, p and p the 
fluid density and viscosity, E the porosity, f the inertial 

Transport in porous media involves complex flow 
patterns around solid particles or fibers. Due to the 
random orientations of the solid phase, exact solu- 
tions to the detailed local flow field are impossible. 
Instead tenable solutions are found by volume aver- 
aging the governing equations. This averaging, how- 
ever, obscures local pore phenomena that contribute 
to the global transport, and hence requires the use 
of empirical relations for closure. The averaging is 
performed over a volume smaller than the overall 
dimensions but which contains a representative num- 
ber of pores or fibers. For a channel or two-dimen- 
sional boundary layer the averaging volume is rep- 
resented by a cylindrical tube aligned perpendicular 
to the flow direction such as depicted in Fig. 1. 

The steady volume-averaged continuity and 
momentum equations for forced convection in a 
porous medium are [ 1, 3, 41 

V*(u) = 0 (1) 

coefficient and K the permeability. The permeability 
and inertial coefficient are determined from empirical 
relations and depend on the fiber size and porosity 
of the medium [8]. Unlike packed-sphere beds, the 
porosity and permeability for fibrous media are con- 
stant even close to the solid boundary. 

The momentum equation contains terms similar to 
those found in the Navier-Stokes equations, along 
with the flow resistance terms inherent to porous- 
media studies. The first two terms on the right-hand 
side represent the pressure drop and the Darcian 
resistance, respectively. The Darcian term represents 
the form drag caused by the presence of the porous 
medium. If these two terms are isolated from the 
others, the equation reduces to Darcy’s law, a 
uniform-velocity approximation for flow in porous 
media. For higher Reynolds number flows, the Dar- 
cian relation is corrected by adding the third term. 
This term accounts for the larger pressure drop caused 
by the local acceleration and separation around the 
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L_J FIBROUS MEDIUM 

FIG. 1. Diagram of coordinate system and averaging volume. 

solid particles. The fourth term on the right-hand side 
of the equation is an additional pressure loss caused 
by viscous shear along the solid boundary. By includ- 
ing this term, the no-slip boundary condition is sat- 
isfied. The left-hand side of the equation is the volume- 
averaged convective term and is usually neglected 
except when a velocity gradient exists in the flow direc- 
tion such as in the developing region of the flow [ 11. 

The volume-averaged homogeneous energy equa- 
tion is [l, 3, 41 

pc,(zj)*V(T) = v~(k,V(T))-pc,V~(zP) (3) 

where p and cP are the fluid density and heat capacity, 
and k, is the effective stagnant conductivity. The stag- 
nant conductivity, k,, depends on the porosity and 
conductivities of the fluid and solid, thus accounting 
for the molecular conduction within both phases. Its 
bulk value is determined from an empirical model [9]. 
The use of a homogeneous equation assumes locally 
equivalent temperature gradients between the fluid 
and solid phases [4, 51. 

The convective term is decomposed into the average 
and spatially varying components. The additional flux 
arises from mixing as the fluid separates and recom- 
bines around the fibers. If a temperature gradient 
exists in the system the process yields a net transport. 
Therefore dispersion can be viewed as a diffusive pro- 
cess related to the overall temperature gradient and a 
dispersion conductivity 

p+.(C~) = -kdV(T). (4) 

Experimental measurements for packed beds relate 
the dispersion conductivity to a product of the average 
velocity, particle diameter and a constant equal to 0.1 
[3]. A similar approach is used by Koch and Brady 
[7] to model dispersion in fibrous media. Their analy- 
sis uses ensemble averaging and defines the dispersion 
conductivity as the product of the velocity, fiber thick- 
ness and a constant dependent on the porosity. Using 
this approach, the dispersion conductivity equals 

k, = PC&KU (5) 

where y is the dispersion coefficient and the square 
root of the permeability relates to the fiber thickness. 

For a two-dimensional flow in constant-porosity 
media, the governing equations are 

The momentum equation neglects the convective term 
since the velocity is fully developed and varies only in 
the cross-stream direction due to the presence of the 
solid surface. Because of the large Reynolds numbers, 
the energy equation omits the diffusive flux in the 
stream-wise direction. These equations can be written 
in non-dimensional form as 

d2U 
0= l-U-fRe,,U’+s 

ao 
(l+yRe,PrU)ay 1 (9) 

using the following definitions : 

Kd<f’) UD = --__ 
g dx ’ 

,=(u> ~~ =puDJK 
D 

UD @ ’ 

Y=y f 

112 

0 ’ x= *JKie, Pr’ 

@ = (T,)-(T,)’ 
CT)-CT,) (lo) 

If the boundary term is neglected in the momentum 
equation, then the equation reduces to the modified 
Darcy relation with the velocity equal to 

Cg = [-1+(l+4fReD)“‘]/(2fReD). (11) 

A form of this equation determines the permeability 
and inertial coefficient as shown in the experimental 
section. The velocity, U,, represents the average vel- 
ocity in a channel, and for a semi-infinite flow equals 
the free-stream velocity. Using this velocity the aver- 
age Reynolds number is, Re, = ReD U,, a more physi- 
cal parameter than the Darcian Reynolds number, 
Re,, since it represents the actual flow velocity and 
not the pressure drop. 

Using the slug-flow approximation given by equa- 
tion (11) with the boundary conditions for a semi- 
infinite medium 

O=O at X=0 and Y+co, O=l at Y=O 

(12) 

and integrating the energy equation yields 

0 = 1-erf{Y/2[(1+yRe,Pr)X/U,]-“2} (13) 

where erf is the error function. The length-averaged 
Nusselt number is then 

= 2 !jRe,PrDaL(l+yRe,Pr) 1 
112 

(14) 

where Da, is the inverse Darcy number, Da, = LIJK. 
If y = 0, the heat transfer coefficient increases with the 
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FIBROUSMEDIUM - PRESSIJRETAPS 

FIG. 2. Schematic of experimental apparatus. 

square root of the downstream distance and average 
velocity. 

The full momentum equation, equation (8), is ident- 
ical to the first integration of the third-order differ- 
ential equation governing flow in a wedge-shaped 
region [lo]. The equation is solved by multiplying by 
d U/d Y and integrating using the boundary conditions 
dU/d Y = 0 as U --t U,. The equation after rearranging 
terms is 

Y= “(dU*,[2(u,-~*)+(01*2-U,z) 
J‘ 0 

+j2f Re,,(U*' - u,3)]"y. (15) 

This equation is an elliptic integral and is easily inte- 

grated numerically. 

EXPERIMENTAL APPARATUS AND 

PROCEDURE 

Because the internal structure of a fibrous medium 

is complex, local measurements within the medium 
are difficult to perform. The experiment, depicted in 
Fig. 2, is used to determine the average heat transfer 
rate from a heated surface adjacent to a porous 
matrix. The constant-porosity medium was placed in 
the channel of length, L = 15.24 cm, width, w = 5.08 
cm, and height, t = 1.27 cm. Flush with the porous 
surface is a thick (1.27 cm) copper plate that acted as a 
constant temperature surface containing ten copper- 
constantan thermocouples. On this plate are four strip 
heaters connected to separate variable power supplies. 
The opposite wall is made of thick Plexiglas and con- 
tains four thermocouples to check the adiabatic wall 
temperature. Throughout the cases examined, the 
thermal boundary layer was so thin that the adiabatic 
wall remained at the inlet fluid temperature. 

The working fluid was water that had been heated 
and allowed to cool to room conditions to remove 
any dissolved air. The water was held in a large auxili- 
ary tank and drawn via a variable speed pump from 
this tank through a filter into the upstream reservoir. 
This reservoir has a series of adjustable overflow div- 
iders to provide a constant pressure head. Reservoir 
screens dampen fluctuations in the flow before enter- 

ing the channel. An additional section of porous 
media was placed in the upstream channel region to 
provide a region for hydraulic development. 

The water flowed through the channel into another 
smaller downstream reservoir. This reservoir has 
adjustable slats to mix the fluid and to ensure an 
accurate exit bulk temperature. To determine the flow 
rate, the fluid was collected after exiting the channel 
over a specific time interval. Along the bottom of the 
channel are two pressure taps that connect to a U- 
tube manometer for pressure drop measurements. 

The experiment was performed using seven different 
pieces of high-porosity foam material. Each piece con- 
sists of continuously connected fibers formed in a rigid 
open-cell matrix. The materials are isotropic, uniform 
in pore spacing and cut so that the sides were flush 
with the channel walls. There are three different solid- 
phase materials : aluminum (k, = 180 W rn- ’ “C- ‘), 
nickel (k, = 70 W m- ’ “C ‘), and carbon (k, = 6 
W m- ’ “C ‘). The materials offer a range of porosity, 
permeability and effective conductivity. 

Before begmnmg the expertments the channel was 
used without a porous medium to evaluate the pro- 
cedure and external heat losses. The results compared 
with known solutions for thermally-developing lami- 
nar channel flow with one constant temperature and 
one adiabatic wall [I 11. With the porous medium the 
experimental procedure was conducted in two parts. 
First under adiabatic conditions the pressure drop 
was measured for a range of flow rates. From this 
adiabatic data the permeability and inertial 
coefficients for the porous medium were calculated 
using a rearranged version of the modified Darcy 

equation 

dP 1 1 f u, 

dx pu, 
-z+p--. 

JKP 
(16) 

By plotting the quantity (- l/pn,)(dP/dx) as a func- 
tion pu,/p for a range of flow rates, the permeability 
is defined as the intercept and the inertial coefficient 
is determined from the slope [8]. 

After obtaining the permeability and inertial 
coefficient of the material, the heat transfer experi- 
ments were performed to obtain the length-averaged 
heat transfer coefficients. The inlet, outlet and plate 
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Piece 1 2 3 4 5 6 I 
Material C C Ni Al Al Al Al 
Porosity, c 0.97 0.97 0.97 0.97 0.97 0.94 0.94 
Pore density, 4 

[pore cm- ‘1 5 10 10 10 5 10 4 
Permeability, 

K x IO’ [m*] 4.1 0.92 0.96 0.80 4.8 0.53 17.0 
Inertial 

coefficient, f 0.11 0.077 0.089 0.050 0.17 0.10 0.30 
Conductivity 

ratio, k,/k, 1.05 1.05 1.22 1.37 1.37 1.61 1.61 

temperatures were measured along with the input 
power to verify the net heat transfer calculation. The 
flow rate and pressure drop were re-evaluated using 
the adiabatic permeability and inertial coefficient. 
This allowed the velocity measurement to be 
rechecked and ensured that the system had not devi- 
ated from air bubbles trapped within the porous 
medium. 

Using the thermal results, the length-averaged heat 
transfer coefficient is 

h = q/VW - T) = pcp(T, - K)M]~(Tw - VI (17) 

with the length-averaged Nusselt number, s = &L/k,. 
For channel flows the heat transfer coefficient 
can also be defined using the bulk temperature 

r;b = q/V,.,- T,) = pc,(T,- Ti)u,tlMT,- TLJI 
(18) 

with the bulk-temperature Nusselt number, Et, = 

&L/k,. 

RESULTS AND DISCUSSION 

The experimental investigation uses seven different 
pieces of porous media. Table 1 lists these pieces and 
the corresponding flow and thermal parameters. Fig- 
ure 3 shows for three pieces of porous media the 
experimental data used to determine the permeability 
and inertial coefficient as suggested by equation (15). 
The flow parameters from the other materials are 
determined in a similar manner. As Table 1 demon- 
strates, the open matrices of lower pore density 
result in higher permeabilities, and thicker fiber 
matrices of lower porosity produce larger inertial 
coefficients. The table also lists the effective con- 
ductivity of the different pieces. This is determined 
from the statistical model of ref. [9] and reflects 
the solid and liquid conductivity, porosity and fiber 

type. 
The velocity profile is determined using two differ- 

ent methods, numerically integrating the second-order 
differential equation, equation (8), and by evaluating 
the elliptic integral, equation (15). For channel flows 
the centerline velocity replaces the average velocity, 
U,, in equation (15) and in the boundary conditions 
for equation (8), U = 0 at Y = 0, and U = UC at the 
channel midplane. However, the centerline velocity 

5 I I I I I 

x 3 Ni ~10.97 1'10 
0 4 Al 0.97 10 
0 6 Al 0.84 Ill 

: I I I I I I 
4 6 8 10 

p&//d (x104m-‘) 

FIG. 3. Graphical determination of permeability and inertial 
coefficient. 

is not explicitly known and therefore the process is 
iterated until the total flow rate is correct. The differ- 
ential equation, equation (8), is easier to use, but the 
elliptic integral, equation (15), is valuable in checking 
the numerical scheme. 

Figure 4 demonstrates the effect of different porous 
materials on the velocity field for flow in the channel. 
The average velocity is the same for each profile. With- 
out the porous medium the flow is parabolic ; with the 
porous medium the velocity is uniform in the main 
stream with a steep gradient near the wall. For the 
higher-permeability material, K = 5 x 10V6 m*, 
f = 0.3, Re, = 80, the momentum boundary layer is 
slightly thicker and the main stream velocity is 
higher than for the lower-permeability material, 
K = 5 x lo- * m*, f = 0.08, Re, = 8. For each of these 
flows the centerline velocity is approximately 1% 
greater than the average velocity. As shown by ref. [l], 
the momentum boundary layer only grows in the en- 
trance region of the flow. For this experiment the en- 
trance region is neglected by placing a piece of fiber 
material upstream of the heated plate. Hence the mo- 
mentum boundary layer thickness is constant through- 
out the channel. 
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0 

(T-TM) / ITi-T,) 

FIG. 4. Velocity and temperature profiles for slug and laminar flow, and for flow through fibrous media 
in a channel. 

The energy equation, equation (9) is integrated 
using a finite-different technique. The numerical for- 
mulation uses a marching scheme based on upwind 
differences in the flow direction and an implicit cen- 
tral-difference scheme for the cross-stream direction. 
The numerical model is verified by calculating the 
semi-infinite slug flow solution and comparing the 
results to the solution given in equation (13) for y = 0. 
The solutions are also checked by varying the grid 
spacing. 

Figure 4 also depicts the corresponding tem- 
perature profiles at the channel exit for flow confined 
between an adiabatic and a constant temperature sur- 
face, The ratio of effective to fluid conductivity is unity 
and the value of the dispersion coefficient is 0.025 as 
determined from the experiment and discussed in the 
following paragraphs. For the porous-medium profiles 
the temperature gradients at the wall are sharper than 
the parabolic or slug flow profiles. The effect of the 
heated wall has penetrated further into the channel 
containing the fibrous medium. Hence dispersion, like 
turbulent transport, increases the net flux from the 
boundary while mixing the fluid in the main stream, 
yielding a sharper temperature profile. 

Figure 5 shows the variation of the local bulk-tem- 
perature Nusselt number for these four flows with 
the same average velocity. The results for the high- 
permeability material show a higher heat transfer rate 
due to dispersion. The entrance lengths appear to be 
similar since the flow rate and channel size are the 
same. 

The experimental heat transfer results from the 
different types of porous media are shown in Fig. 6. 
Because of the number of parameters involved, the 
results can be presented as a function of many differ- 
ent non-dimensional groups. To first examine the influ- 
ence of the porous medium solely as a function of the 

SLUG FLOW 

.-'- PARABOLIC FLOW 

-K- 5~10~~ m2 

_. . -_ 
’ “Y,.:--_____ 
‘--.Y. --_A--_ 

-. _. _, _ _ :: .‘< .‘i .‘L .‘-: .‘L ,‘A .‘A :i .‘L :- 

OO 
I I I I I I I 

0.25 0.6 0.75 1.0 

X/L 

FIG. 5. Local bulk-temperature Nusselt numbers for slug 
and laminar flow, and for flow through fibrous media in a 

channel. 

flow rate, independent of the permeability or solid con- 
ductivity, the data are presented as a function of the 
Reynolds-modified-Darcy parameter, Re, Da, = 
pu,L/p, and the bulk-temperature Nusselt number 
based on fluid conductivity, Nubf = t&L/kr Also 
shown in the figure are the theoretical predictions for 
the Nusselt numbers for slug and laminar flow in a 
channel [ 111. As the figure demonstrates, the porous 
material significantly enhances the heat transfer. For 
any of the materials the difference between the experi- 
mental results and the slug-flow predictions increases 
with permeability and flow rate suggesting the depen- 
dence of dispersion on both of these quantities as 
assumed in equation (5). The highest Nusselt numbers 
correspond to the material of the highest permeability, 
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FIG. 6. Bulk-temperature Nusselt numbers as a function 
of Reynolds number based on channel length for different 

porous materials and flows. 

cIIO 50 :oo 150 200 250 300 

Re a Pr 

FIG. 7. Average Nusseltsnumbers as a function of Reynojds- 
Prandtl number based on permeability. 

Piece 7. Pieces 2-4 have similar flow parameters and 
though the materials are of different conductivities, 
the heat transfer results are similar. For this high 
porosity, the fibers are thin and conduction may not 
be significant; instead dispersion dominates any 
molecular conduction, resulting in heat transfer seem- 
ingly independent of solid conductivity. However, for 
lower-porosity materials, such as Piece 6, the heat 
transfer has increased compared to that for Pieces 2- 
4 since the material is slightly more conductive. 

In Fig. 7 the heat transfer data are presented as a 
function of the Reynolds-Prandtl number based on 
permeability, Re, Pr = pu,JKjp, and the Nusselt - 
number based on effective conductivity, Nu = m/k,. 
The data fall in distinct groups depending on the 
permeability of the material. The dashed lines are 

600 

I I I I I I I I I 
OO 2 4 6 6 10 

AeaPrOaLl/2 (xl+) 

FIG. 8. Average Nusselt numbers as a function of Reynolds- 
Prandtl-modified-Darcy number. 

numerical calculations for the hydrodynamically 
developed, thermal entrance region in a channel with 
one constant temperature and one adiabatic surface. 
The calculations for each piece of fibrous media are 
based on the effective conductivity and the experi- 
mentally measured permeability and inertial co- 
efficient listed in Table 1. With a dispersion 
coefficient of 0.025, the calculated lines fall close to 
the experimental data indicating the simple model 
for dispersion, equation (5), is suitable for the flow 

conditions considered. 
If the data in Fig. 7 are reduced using the grouping, 

Re Pr Da;‘*, the data collapse to a single line in Fig. 
8. ?his grouping is also suggested by the modified- 
Darcian results, equation (14), for Re,Pr greater than 
one. Thus for high Reynolds number flows the Nusselt 
number is directly proportional to the average flow 
rate and a characteristic length, (L,/K) “* 

% oc Re, Pr Da:‘* = u,L”*K’/~/u~. (19) 

This relation also suggests the heat transfer coefficient 
is independent of conductivity for higher Reynolds 
number flow as indicated by the experimental data. 
Furthermore, the results demonstrate the adequacy 
of the homogeneous energy equation to model the 
transport for the flow conditions considered. 

The theoretical lines are based on a dispersion 
coefficient, y, equal to 0.025 and the empirical disper- 
sion conductivity given in equation (5). The analysis 
by Koch and Brady [7] develops a similar relation 
showing dispersion directly proportional to the local 
velocity at higher Reynolds numbers. Their work sug- 
gests the following relation : 

(20) 

where D is the molecular diffusivity, Pe, the mass 
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diffusion Peclet number, Pe, = u,JK/D, and A is a 
constant similar to y but dependent on porosity. For 
a porosity of 0.97 the coefficient A is 0.083, approxi- 
mately three times larger than the experimental value, 
y. However, the semi-theoretical relation given for the 
permeability appears to underestimate the measured 
value. For Pieces 2-4 the average fiber radius is 0.2 
mm and the permeability is about 1 x 10m7 m*. Using 
this value in Koch and Brady’s permeability relation- 
ship, the experimental permeability would correspond 
to a radius of about 0.075 mm, about half the actual 
size. However, the product of the dispersion 
coefficient and the square root of permeability are 
close suggesting the ratio of dispersion to molecular 
diffusivity (or conductivity) are similar for the present 
heat transfer experiment and the theoretical analysis 
of Koch and Brady [7]. 

CONCLUSIONS 

The present experiment and analysis demonstrate 
the increase in heat transfer from thermal dispersion. 
The model develops a relation for dispersion by equat- 
ing the dispersion conductivity to a product of the 
velocity, square root of the permeability and an exper- 
imental constant determined from seven different 
pieces of fibrous media. Though the focus of the work 
is forced convection, the same dispersion model can 
be applied to natural convection problems such as 
transport in thermal insulation. By using materials of 
different conductivities, experiments demonstrate that 
dispersion overwhelms transport from solid conduc- 

tion. However, a single homogeneous energy equation 
suffices to model the transport. 
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EFFETS DE DISPERSION THERMIQUE SUR LA CONVECTION FORCEE DANS LES 
MILIEUX FIBREUX 

R&sum&L’ttude experimentale concerne l’ecoulement non darcien et le transfert de chaleur dans les 
milieux fibreux a haute porositi. On considere la convection for&e a travers les materiaux de differentes 
permeabilites, porositts et conductivitts thermiques. Les resultats montrent que les milieux poreux accroiss- 
ent le transfert de chaleur a partir dune surface, en comparaison avec les resultats calcules pour l’ecoulement 
piston ou laminaire dans un canal. Cet accroissement rbsulte de la diffusion, un phenomene non darcien 
qui decrit le melange intra-pore qui apparait quand le fluide se diplace entre les particules solides. Le 
transport dispersif augmente avec le flux d’ecoulement et la permeabilite, et aux grands nombres de 
Reynolds il dipasse l’effet de la conduction dans le solide fibreux. Pour calculer la dispersion, ce travail 
developpe un modtle simple base sur les conditions d’ecoulement et les types de milieux poreux. Les 
rtsultats de l’experience et du modele illustrent les effets de la dispersion et la pertinence de l’tquation 

d’energie homogene fluide-solide pour modiliser le transfert. 

AUSWIRKUNGEN DER THERMISCHEN DISPERSION AUF DIE ERZWUNGENE 
KONVEKTION IN FASERFORMIGEN MEDIEN 

Zusammenfassung-Die Nicht-Darcy-Strlimung und die Warmeiibertragung in hochpordsen faserformigen 
Stoffen wird experimentell untersucht. Erzwungene Konvektion durch Materialien verschiedener Per- 
meabilitlt, Porositlt und Wiirmeleitfahigkeit werden betrachtet. Die Ergebnisse zeigen die Verbesserung 
des Wlrmeilbergangs an einer Oberlliiche in dem porijsen Medium im Vergleich zu den berechneten 
Ergebnissen fur eine Kolbenstrijmung oder laminare Kanalstriimung. Diese Verbesserung riihrt von der 
Dispersion her, einem Nicht-Darcy-Vorgang, welcher die intrapordse M&hung beschreibt, die sich voll- 
zieht, wenn das Fluid an den festen Partikeln vorbeistromt. Der dispersive Transport nimmt mit der 
DurchfluBleistung und der Permeabilitlt zu und iibersteigt bei hohen Reynolds-Zahlen den Transport 
durch Wlrmeleitung im festen Teil des faserformigen Mediums. Urn die Dispersion vorauszubestimmen, 
wurde im Rahmen dieser Arbeit ein einfaches Model1 entwickelt, das auf den Strijmungsverhaltnissen und 
der Form des poriisen Mediums basiert. Die Ergebnisse aus Experiment und Modellrcchnung zeigen den 
Einflul.3 der Dispersion und rechtfertigen das Modell, welches auf einer homogenen Fluid-Festkiirper- 

Energiegleichung heruht. 
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